نوع مقاله : مقاله پژوهشی
نویسندگان
1 استادیار گروه مهندسی نقشه برداری- دانشکده مهندسی عمران- دانشگاه تبریز
2 استادیار گرایش GIS گروه مهندسی عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد
3 عضو هیات علمی گروه مهندسی نقشه برداری، دانشگاه آزاد اسلامی واحد بناب
چکیده
امروزه به لطف دادههای سنجش از دور ماهوارهای، مشاهدات فضایی برای نظارت و پایش دقیق و مداوم سطح و تراز دریاچه ارومیه فراهم شده است. با این وجود، هنوز مدل مناسبی جهت تعیین ارتباط بین مساحت و تراز دریاچه ارومیه که یک فاکتور مهم در تجزیه و تحلیلهای مختلف هیدرولوژیکی و زیست محیطی است، پیشنهاد نشده است. هدف مقاله حاضر، استخراج خصوصیات تراز-سطح دریاچه ارومیه با استفاده از دادههای سنجش از دور (فضایی)، مشاهدات زمینی و مدلهای تحلیلی است. معادلات تراز-سطح دریاچه با استفاده از دادههای تراز ایستگاه زمینی و دادههای سطح مستخرج از تصاویر ماهوارهای همزمان آنها تعیین شده است. در تحقیق حاضر 6 مدل پیشنهادی شامل توابع پایه چندجملهای، نمایی، فوریه، گوسین، کسری (گویا) و شبکه عصبی به همراه مدلهای موجود، شامل؛ آب منطقهای آذربایجان غربی و مدل دانشگاه سهند با استفاده از دادههای تعلیمی آموزش دیده و با استفاده از دادههای اعتبارسنجی مورد ارزیابی قرار گرفته است. با مقایسه معیارهای ارزیابی RMSE، MAE، MAPE و NSE، مشخص گردید که تابع کسری به عنوان بهترین مدل پیشنهادی تراز-سطح دریاچه ارومیه، قادر است تنها با خطای RMSE=57.8 کیلومترمربع و با NSE=0.9958، مساحت دریاچه ارومیه را برآورد نماید. با لحاظ معیار RMSE، مشخص میشود که مدل تابع کسری پیشنهادی خطای تخمین سطح دریاچه را نسبت به بهترین مدل پیشین حدود 5 برابر کاهش داده است. با توجه به اندازهگیری روزانه تراز دریاچه در ایستگاه زمینی، مدل پیشنهادی تراز-سطح، میتواند مساحت روزانه دریاچه را بدون نیاز به مشاهدات فضایی (تصاویر ماهوارهای) برآورد نماید.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Design of water level-surface models for Urmia Lake based on ground and space observations
نویسندگان [English]
- Vahid Sadeghi 1
- Hossein Etemadfard 2
- Younes Naeimi 3
1 Assistant Professor, Department of Geomatics Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
2 Assistant Professor, Civil Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
3 Assistant Professor, Department of Geomatics Engineering, Bonab Branch, Islamic Azad University, Bonab, Iran
چکیده [English]
Urmia Lake is the second-largest permanent hypersaline lake in the world. It is situated in the northwestern corner of Iran surrounded by East and West Azerbaijan provinces, near the Turkish border. This lake was declared a Wetland of International Importance by the Ramsar Convention in 1971 and designated a UNESCO Biosphere Reserve in 1976. Its surface, unfortunately, has declined sharply in recent decades. Scientists have warned that this continuous shrinking would lead to increased salinity, the collapse of the lake’s ecosystem, loss of wetland habitat, wind-blown salt storms, alteration of local climate, and serious negative impacts on local agriculture and livelihoods, as well as regional health in Iran and neighbor countries including Turkey, Iraq, and Azerbaijan.Accurate and comprehensive spatial information (such as the lake’s surface and shorelines) and descriptive information (such as salinity of water and soil) of the lake are essential to deal with current and emerging crises. This information can be obtained by ground-based and space-based measurements. While daily measurement of the lake level at ground stations is one of the most important ground-based observations, ground measurements of the lake's surface are not a practical method. Bysatellite remote sensing data, space observations have been provided for accurate and continuous monitoring of the Lake's surface and its water level. Since each of the ground and space observations has its advantegaes and disadvanteges, many efforts have been made to estimate the correlation of these observations (ground-based observations of lake’s level and space-based observations of lake’s surface). Although many studies have been conducted in this field, no efficient model has been proposed to relate the surface area and the water level of Urmia Lake, which is an important factor in various hydrological and environmental analyzes.
This paper aims to extract the level-surface characteristics of Urmia Lake using space observations and ground-based measurements of level and analytical models. Level-surface models have been determined based on ground observation of water level and simultaneous space observation of lake surface area. As a result, daily estimates of the lake surface will be provided without the space-based observations. In the present study, 6 proposed models (including Polynomials, Exponential function, Fourier transformation, Gaussian function, rational function (RF), and artificial neural network (ANN)) were applied along with the two existing models (including the EAWO (Eastern Azerbaijan Water Organization) model and the Sahand University model).
To evaluate the effectiveness of mentioned methods, 44 samples include the lake’s surface (from Mar. 2005 to Dec. 2015) and corresponding water levels on the same date were used. All of these models were calibrated by training data and evaluated based on validation data. Used data records include water level fluctuation from 1270.43 m to 1273.9 m above mean sea level, and the lake area (surface) fluctuation from 1837 sq. km to 4508 sq. km.
Comparing the RMSE, MAE, MAPE, and NSE of all mentioned models, it was found that the proposed RF-based model estimates the area of Urmia Lake only with an error of RMSE = 57.8 sq. km, MAE= 46.2, MAPE=1.5%, and NSE=0.9958, which is five times better than the best previous models in terms of RMSE measure. One level below is ANN whose RMSE equals 62.3 sq. km and NSE= 0.9951. Two-degree Gaussian function (with RMSE= 86.53 sq. km and NSE= 0.9907), Fourier transformation (with RMSE= 145.30 sq. km and NSE= 0.9251), two-degree Exponential function (with RMSE= 173.46 sq. km and NSE= 0.9626) and three-degree polynomial (with RMSE= 173.68 sq. km and NSE= 0.9625) were in the lower levels, respectively. It is worth noting that all of these proposed models are more effective than the state-of-the-art models. The worst results were obtained by the Sahand University model with an error of RMSE = 856.8 sq. km and NSE= 0.088).
Despite the similar accuracy of ANN and RF models, the design and computational complexity of the ANN model are much greater than the RF model. Therefore, the RF model with higher accuracy and less complexity than the ANN is introduced and recommended as the best model for estimating the level-surface characteristic of Urmia Lake. According to the proposed level-surface model and daily ground-based measurement of the water level of the lake, it is possible to estimate the daily area of the Urmia Lake surface without any space measurements. The findings of this study can be used in various hydrological and environmental analyzes and monitoring and rehabilitation programs of Urmia Lake.
کلیدواژهها [English]
- Area estimation
- remote sensing
- regression
- rational function
- ANN
- دسترنج ح. ر. توکلی ف. و سلطانپور ع. 1397. بررسی تغییرات سطحی و حجمی آب دریاچة ارومیه با استفاده از تصاویر ماهوارهای و ارتفاعسنجی ماهوارهای. فصلنامة علمی-پژوهشی اطلاعات جغرافیایی سپهر. 27(107): 149-163.
- آذرافزا م. و مختاری م. ح. 1392. ارزیابی تغییرات شوری آب دریاچة ارومیه در اثر خشکسالی با استفاده از سنجشازدور. فصلنامة علمی-پژوهشی خشک بوم. 3(2): 1-14.
- Abbaspour M. and A Nazaridoust. 2007. Determination of environmental water requirements of Lake Urmia, Iran: an ecological approach. International Journal of Environmental Studies. 64(2): 161-169.
- AghaKouchaka A. Norouzi H. Madani K. Mirchi A. Azarderakhsh M. Nazemi A. Nasrollahi N. Farahmand A. Mehran A. and Hasanzadeh E. 2015. Aral Sea syndrome desiccates Lake Urmia: call for action. Journal of Great Lakes Research. 41(1): 307-311.
- Ahmadi J. Kahforoushan D. Fatehifar E. Zoroufchi Benis K. and Nadjafi M. 2015. Forecasting Surface Area Fluctuations of Urmia Lake by Image Processing Technique. Journal of Applied Research in Water and Wastewater. 2(2): 183-187.
- Cook A. G. Weinstein and Centeno J.A. 2005. Health effects of natural dust. Biological Trace Element Research. 103(1): 1-15.
- Crétaux J. F. Arsen Calmant S. Kouraev A. Vuglinski V. Bergé-Nguyen M. Gennero M.C. Nino F. Abarca Del Rio R. Cazenave A. and Maisongrande P. 2011. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in space research. 47 (9): 1497-1507.
- Delavar M. A. Naderi A. Ghorbani Y. Mehrpouyan A. and Bakhshi A. 2020. Soil salinity mapping by remote sensing south of Urmia Lake, Iran. Geoderma Regional. 22: e00317.
- jamali M. de Beaulieu J.L Shah-hosseini M. Andrieu-Ponel V. Ponel P. Amini A. Akhani H. Leroy S. Stevens L. Lahijani H. and Brewer S. 2008. A late Pleistocene long pollen record from Lake Urmia, NW Iran. Quaternary Research. 69(3): 413-420.
- Eimanifar A. and Mohebbi F. 2007. Urmia Lake (northwest Iran): a brief review. Saline systems,. 3(1): 1-8.
- Farahmand N. and Sadeghi V. 2020. Estimating Soil Salinity in the Dried Lake Bed of Urmia Lake Using Optical Sentinel-2 Images and Nonlinear Regression Models. Journal of the Indian Society of Remote Sensing. 48(4): 1-13.
- Ghaheri M. Baghal-Vayjooee M.H. and Naziri J. 1999. Lake Urmia, Iran: a summary review. International Journal of Salt Lake Research. 8(1): 19-22.
- Hassanzadeh E. Zarghami M. and Hassanzadeh Y. 2012. Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water Resources Management. 26(1): 129-145.
- Jaafari S. Danehkar A. and Alizadeh Shabani A. 2013. Investigation of coastline change of the Urmia Lake using remote sensing and GIS (1990-2012), International Journal of Aquatic Biology. 1(5): 215-220.
- Kim P. 2017. Matlab deep learning with machine learning, neural networks and artificial intelligence. Apress, New York.
- Merufinia E. Aram A. and Esmaeili F. 2014. Saving the Lake Urmia: from slogan to reality (challenges and solutions). Bulletin of Environment, Pharmacology and Life Sciences. 3(3): 277-288.
- Nash J.E. Sutcliffe J.V. 1970. River flow forecasting through conceptual models part I- A discussion of principles, Journal of hydrology. 10 (3): 282-290.
- Mohammadi A. Shahabi H. Shirzadi A. Al-Ansari N. Ahmad B.B. Chen W. Khodadadi M. Ahmadi M. Khosravi K. Jaafari A. and Nguyen H. 2020. Monitoring and assessment of water level fluctuations of the lake urmia and its environmental consequences using multitemporal landsat 7 etm+ images. International journal of environmental research and public health. 17(12): 4210.
- Pengra B. The drying of Iran’s Lake Urmia and its environmental consequences. UNEP-GRID, Sioux Falls, UNEP Global Environmental Alert Service (GEAS).
- Sima S. and Tajrishy M. 2013. Using satellite data to extract volume–area–elevation relationships for Urmia Lake, Iran. Journal of Great lakes research. 39(1): 90-99.
- Tourian M.J. Elmi O. Chen Q. Devaraju B. Roohi Sh. and Sneeuw N. 2015. A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sensing of Environment. 156: 349-360.
- Yamaguchi N. Sakotani A. Ichijo T. Kenzaka T. Tani K. Baba T. and Nasu M. 2012. Break down of Asian dust particle on wet surface and their possibilities of cause of respiratory health effects. Biological and Pharmaceutical Bulletin. 35(7): 1187-1190.
- Zeinoddini M. Tofighi M.A. and Vafaee F. 2009. Evaluation of dike-type causeway impacts on the flow and salinity regimes in Urmia Lake, Iran. Journal of Great Lakes Research. 35(1): 13-22.