برآورد دوره بازگشت دبی اوج و حجم سیلاب مبتنی بر آنالیز دومتغیره بارندگی در حوضه آبریز بارز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد بین المللی کیش، دانشگاه آزاد اسلامی، جزیره کیش، ایران

2 دانشگاه شهید چمران اهواز، اهواز، ایران.

3 گروه مهندسی عمران، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران.

چکیده

پیش بینی بروز سیلاب یا رواناب بر پایه ریسک فرایندی است که به محققان اجازه می‌دهد عدم قطعیت‌های عامل بر فرایند تصمیم‌گیری را در نظر گرفته و سطح اعتمادپذیری رویدادهای هیدرولوژیکی را تعیین کنند. این تحقیق به منظور کاربرد عدم قطعیت‌های هیدرولوژیکی در برآورد احتمالاتی سیلاب های دشت بارز در استان خوزستان واقع در جنوب غربی ایران انجام شد. تأثیر منابع عدم قطعیت بر مشخصه‌های بارندگی و رواناب با استفاده از توسعه یک مدل احتمالاتی چندمتغیره بر پایه توابع توزیع کاپولا تعیین شد. برای دستیابی به این هدف، سری‌های زمانی اطلاعات شامل حداکثر دبی لحظه‌ای و حداکثر حجم سیلاب برای یک دوره 37 ساله گردآوری شد. در این راستا از توابع توزیع احتمالاتی تک متغیره برای متغیرهای بارندگی و رواناب و از توابع کاپولا برای برازش چندمتغیره اطلاعات هیدرولوژیکی استفاده گردید. در بخش بهینه‌سازی واکنش فازی دو تابع هدف متضاد شامل کمینه‌سازی و بیشینه‌سازی تابع پیش بینی رواناب در ساختار یک مدل شبیه‌سازی – بهینه‌سازی الگوریتم ژنتیک چندهدفه مبتنی بر رتبه‌بندی نامغلوب تعریف و برای رسیدن به بهترین مقادیر متغیرهای تصمیم اجرا شد. توابع توزیع گاما، لوگ نرمال، مقادیر حدی تعمیم یافته، لوگ پیرسون و تابع ارشمیدسی کلایتون گزینه های منتخب به ترتیب برای شدت بارندگی، عمق بارش، پیک جریان، حجم رواناب و محاسبه دوره بازگشت دومتغیره هستند. همچنین نتایج نشان داد که همبستگی بین مشخصه‌های بارندگی 0.73 و بین شدت بارندگی و رواناب 0.86 بر اساس شاخص پیرسون است.‬‬‬‬

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimating the return periods of the flood volume and peak flow based on bivariate rainfall analysis in Barz Palin

نویسندگان [English]

  • Babak Sabaghi 1
  • Mahmood Shafai Bajestan 2
  • Babak Aminnezhad 3
1 Department of Civil Engineering, Kish International Branch, Islamic Azad University, Kish Island, Iran.
2 Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Department of Civil Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran.
چکیده [English]

Uncertainty analysis in systems evaluation and management has been considered as a logical aspect in engineering estimates in recent decades. Uncertainty generally implies that there is no complete knowledge of the behavior of a system and the specific values ​​of its variables. Currently, the uncertainty problem has been one of the topics of interest in research, decision-making and design in the field of water science and engineering. Furthermore, field observational evaluations have shown that hydrological phenomena are inherently random and can follow probabilistic functions. In the past, univariate probability models have been used to predict hydrological events. But today, it has been shown that hydrological phenomena such as precipitation, runoff, flood, and drought are random and multivariate and should be expressed by the characteristics of intensity, duration and amount. The efficiency of copula functions has been proven as an effective technique in multivariate analysis of hydrological events. This study was aimed to develop the probabilistic-fuzzy framework according to the existing gap in the previous studies. Therefore, long-term rainfall and runoff information were analyzed for generating the decision-making system in Barz Plain, Khuzestan province, Iran. Four parameters of maximum rainfall rate and depth, peak flow and volume of runoff have been analyzed to generate the time series of information.
The developed conceptual structure could be addressed in four steps. In the first step, an attempt was made to analyze the relationship between the flood hydrographs in the period from 1973 to 2018 in Barz Plain. Barz plain is located in the eastern north of Khuzestan province, Iran within 31° 18' to 31° 28' latitude and 50° 18' to 51° 26' longitude. Next, a probabilistic model was developed by the MATLAB program. In this model, marginal distribution functions, bivariate frequency analysis and calculation of return periods for rainfall characteristics were evaluated. Moreover, a fuzzy set analysis sub-program was prepared to transfer the effects of rainfall to the runoff. This process was developed within the framework of a multi-objective optimization program that was solved using the NSGAII method. The hydrological information used in this study includes the amount of rainfall and runoff recorded in daily time steps. Analysis of available data revealed about 37 rainfall events that led to the flood. Rainfall characteristics (maximum daily rate (mm/day) and cumulative rainfall depth in one event (mm)) and two characteristics of runoff hydrograph (hydrograph peak flow (m3/s) and runoff volume (million cubic meters (MCM)) were calculated from daily rainfall and runoff information. Therefore, a probabilistic decision model based on copula multivariate functions was developed to predict the variables at different return periods. The relationship between rainfall rate and depth with peak hydrograph flow and runoff volume for flood events over a 37-year period was formulated through fuzzy set theory. The feasible domain of the fuzzy problem was searched using a multi-objective optimization genetic algorithm based on the non-dominated sorting to find the extreme points. The obtained solutions were used as a fuzzy response to calculate the runoff of the Barz plain in Khuzestan province in southwestern Iran.
The relationship between rainfall and runoff characteristics showed that the maximum rainfall rate and the peak runoff discharge can be inspired by fuzzy theory and create a logical relationship. The results obtained by Chi-Squared, Anderson Darling and Kolmogorov Smirnov tests for the marginal frequency functions indicated that the Generalized Gamma, Log Normal, Generalized Extreme Values, and Log Pearson functions were the best options for estimating the maximum rate and depth of rainfall and peak flow and volume of runoff, respectively. Correlation coefficient was calculated to evaluate the bivariate model performance for the variables. The results of the maximum likelihood estimator to determine the superior joint function showed that Archimedean Clayton copula fited better than others for rainfall characteristics. Based on the developed concepts, the predicted runoff for Barz plain was estimated between 650 to 850 MCM for a 100-year return period. This return period is recommended for reservoir dam design. Consequently, in the 25-year return period, which is an appropriate time scale for flood diversion systems of water storage reservoirs, flood volume of 140 to 173 MCM with a maximum flow of 850 m3/s has been obtained. This flood can be caused by a rainfall of 78 mm/day or a depth of 137 mm.

کلیدواژه‌ها [English]

  • Uncertainty
  • Nondominated sorting
  • Multiobjective
  • Hydrological analysis
  • Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 19(6): 716-722.
  • Biglarbeigi P. Giuliani M. and Castelletti A. 2018 Partitioning the impacts of streamflow and evaporation uncertainty on the operations of multipurpose reservoirs in arid regions. J Water Resour Plann Manage. 144(7): 05018008
  • Chen L. and Guo S. 2019. Copulas and Its Application in Hydrology and Water Resources. Springer https://doi.org/10.1007/978-981-13-0574-0.
  • Clayton, D.G. 1978. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Bimetrika. 65: 141-151.
  • Davtalab R. Mirchi A. Khatami S. Gyawali R. Massah A. R. Farajzadeh M. and Madani K. 2017. Improving continuous hydrologic modeling of data-poor river basin using hydrologic engineering center’s hydrologic modelling system: case study of Karkheh River basin. Journal Hydrol Eng, 05017011-1.
  • Deb K. Pratap A. Agarwal S. and Meyarivan T. 2002. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation, 6: 181-197
  • Dehghani M. Saghafian B. and Zargar M. 2019. Probabilistic hydrological drought index forecasting based on meteorological drought index using Archimedean copulas. Hydrology Research. 50: 1230-1251.
  • Dehghani M. Saghafian B. Nasiri Saleh F. Farokhnia A. and Noori R. 2014. Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation. Int Journal Climatology. 34: 1169-1180.
  • Dong N. D. Agilan V. and Jayakumar K. V. 2019. Bivariate flood frequency analysis of nonstationary flood characteristics. Journal Hydrologic Engineering. 24(4): 04019007
  • Genest C. and Faver A.C. 2007. Everything you always wanted to know about Copula modeling but were afraid to ask. Journal of Hydrologic Engineering. 12(4): 347-368.
  • Haghighi A. and Zahedi A. 2014. Uncertainty analysis of water supply networks using the fuzzy set theory and NSGA-II. Engineering Applications of Artificial Intelligence. 32: 270-282.
  • Hall J. 2003. Handling uncertainty in the hydroinformatics process, Journal of Hydroinformatics. 05(4): 215-232.
  • Helton J. C. and Davis F. J. 2003. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety. 81(1): 23-69.
  • Kojadinovic I. and Yan J. 2010. Package Copula. Version 0.9-7, May 28. http://cran.r-project.Org/web/packages/copula/coupla.
  • Kong X. M. Huang G. H. Li Y. P. Fan Y. R. Zeng X. T. and Zhu Y. 2018. Inexact copula-based stochastic programming method for water resources management under multiple uncertainties. J Water Resour Plann Manage. 144(11): 04018069.0
  • Lalehzari R. and Kerachian R. 2020. Developing a Framework for Daily Common Pool Groundwater Allocation to Demands in Agricultural Regions. Agricultural Water Management. 241(1): 106278.
  • Maurer E. P. Kayser G. Doyle L. and Wood A. W. 2018. Adjusting flood peak frequency changes to account for climate change impacts in the western United States. J Water Resour Plann Manage 144(3): 05017025.
  • Requena A. I. Mediero L. and Garrote L. 2013. A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. Hydrology and Earth Syst Sciences. 17: 3023-3038.
  • Salas J. D. and Obeysekera J. 2019. Probability distribution and risk of the first occurrence of k extreme hydrologic events. Journal of Hydrologic Engineering. 24(10): 04019032.
  • Sklar A. 1959. Fonction de re’partition a’n dimensions et leurs marges. [Distribution functions, dimensions and margins]. Publications of the Institute of Statistics, University of Paris, Paris. 229–231.
  • Srinivas N. and Deb K. 1994. Multi-objective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation. 2: 221-248.
  • Stephens M. A. 1986. Tests based on EDF statistics, Goodness-of-fit Techniques. 68: 97-193.
  • Tung Y. K. Yen B. C. and Melching C. S. 2006. Hydrosystems engineering reliability assessments and risk analysis, McGraw-Hill, New York. 735 p.