شبیه سازی رشد ذرت و توزیع رطوبت خاک با استفاده از مدل AquaCrop و کاربرد کمپوست نیشکر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آبیاری و زهکشی، دانشگاه آزاد اسلامی، واحد شوشتر، شوشتر، ایران

2 دانشگاه آزاد اسلامی

3 گروه مهندسی عمران- مهندسی و مدیریت منابع آب، دانشگاه آزاد اسلامی، واحد شوشتر، شوشتر، ایران

4 دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

توسعه روش‌هایی برای بهبود ظرفیت رطوبت خاک و افزایش عملکرد بیولوژیکی گیاهان در مناطق خشک و نیمه‌خشک ضروری است. این مطالعه برای ارزیابی تأثیر کمپوست نیشکر بر عملکرد ذرت تحت شرایط آب و هوایی دشت گتوند در استان خوزستان، جنوب غربی ایران انجام شده است. بنابراین یک آزمایش میدانی با سه تیمار کاربرد کمپوست نیشکر (0 ، 15 و 30 تن در هکتار) و چهار سطح تأمین آب محصول (%50، %75، %100 و %125 کل آب موردنیاز) در سه تکرار انجام شد. این آزمایش‌ها برای دو فصل رشد (فصل رشد اول از فروردین تا تیرماه 1398 و فصل دوم رشد از مرداد تا آذرماه 1398) طراحی و اجرا شد. برنامه‌ریزی آبیاری، عملکرد بیولوژیکی، شاخص برداشت و پوشش تاج در دو فصل رشد اندازه‌گیری و برای شبیه-سازی رشد ذرت در سناریوهای مختلف کاربرد آب و کمپوست نیشکر با استفاده از نرم‫افزار AquaCrop بکار گرفته شد. نتایج نشان داد که سطح پوشش سایه انداز و طول دوره بلوغ تا آغاز پیری سطح سایه انداز در کشت بهاره بیش از کشت تابستانه بود. علاوه بر این آزمون حداقل خطا نشان داد که استفاده از کمپوست نیشکر عملکرد محصول را در سطح اطمینان یک درصد افزایش داد. عملکرد بیولوژیک ذرت در منطقه مورد مطالعه بین 13678 کیلوگرم در هکتار در تیمار کم‌آبیاری 50 درصد با کاربرد 30 تن در هکتار کمپوست تا 17344 کیلوگرم در هکتار در شرایط آبیاری کامل بدون کاربرد کمپوست در کشت تابستانه متغیر است. آنالیز اقتصادی کاربرد کمپوست افزایش حداقل 20 درصد درآمد خالص را نشان داد.‬‬‬

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulating the growth of maize and soil moisture distribution using AquaCrop model and application of sugarcane compost

نویسندگان [English]

  • Hossein Behdarandi 1
  • Saeb Khoshnavaz 2
  • Hossein Gharbani Zadeh Kharazi 3
  • saeed boroomand 4
1 .
2 Islamic Azad University
3 .
4 .
چکیده [English]

Optimizing the sustainable use of water resources across local or regional systems is a complicated management challenge with significant implications. The world population in 2050 will be more than 9.5 billion people that it needs about 60% more food. Furthermore, the water availability for irrigation will decrease because of competing demands from other sectors, i.e., industrial, domestic, and hydroelectric generation. Pre-growing season estimation of agricultural outcomes such as water losses, net benefit and yield production can provide insights to beneficiaries and farmers to make optimum decisions. According literature review, the potential of machine learning algorithms for maize growth simulator was evaluated to develop a decision support system; In that case, three million data such as genotype, environment and management scenarios were incorporated for predicting yields in framework. The results provided a dynamic decision technique for pre-season management. In other case study, maize water use was measured based on the water balance in a 6-year field trial in the west-central Great Plains of the United States. Another research presented an optimization model to allocate irrigation water for maize using crop water production functions under deficit irrigation. The problem structure was determined based on maize and sunflower water productivity data collected during 2008–2011 growing seasons in eastern Colorado. The results show that deficit irrigation does improve farm income at moderate to high leasing prices. Moreover, the proposed model can define the crop and water leasing prices for which deficit irrigation is worthwhile. Therefore, increasing the efficiency of land and water resources can be considered as the main policy to find the sustainable decision. It is necessary to develop methods to improve soil moisture capacity and increase plant biomass in arid and semi-arid areas. This study was conducted to evaluate the impact of sugarcane compost on maize yield under the climate conditions of Gotvand plain in Khuzestan province, southwestern Iran. This agricultural residue can be used for improving the soil porous media structure to increase water availability in the root zone. Economic analysis of the application of sugarcane bagasse has been done at different levels of plant water supply needs, using the development of the growth simulation model and optimization technique.
In this study, simulation of maize yield and soil water content with AquaCrop software under full and deficit irrigation managements and sugarcane bagasse utilization was evaluated. This agricultural residue can be used for improving the soil porous media structure to increase water availability in the root zone. Economic analysis of the application of sugarcane bagasse at different levels of plant water supply needs has been done using the development of the growth simulation model and optimization technique.  A field experiment with three treatments of sugarcane compost application (0, 15, and 30 ton/ha) and four levels of crop water supply (50%, 75,% 100%, and 125% of total water requirement) was performed in three replications for two growing seasons (March to December 2019). Irrigation planning, cultivation costs, biomass, harvest index and canopy cover were measured at different time steps of the growing seasons to provide growth simulation models using AquaCrop software. The error statistics of calibration process were evaluated by root mean square error (RMSE), Nash– Sutcliffe efficiency index (NSE), normalized objective function (NOF), and mean absolute error (MAE) for the simulated and observed yield production values.
Calibration and verification process were carried out based on the two replications and one replication, respectively. The results presented in the scatter diagram and the coefficient of determination values close to one showed that the simulation model can be used to estimate the yield production in different scenarios of irrigation water distribution. The results showed that the use of sugarcane bagasse increases the soil water availability, harvest index and yield production at a confidence level of 1%. Optimal irrigation planning in this study was performed using the gray wolf optimization algorithm with the objective of maximizing crop yield. Optimal irrigation strategies reduce water losses, increase biomass and improve economic efficiency compared to existing conditions. Optimal planning based on daily information can determine the depth and timing of irrigation simultaneously. Increasing the water productivity and the net income for farmers and reducing the costs of bagasse application could be considered as positive implications of the developed simulation-optimization model. Future research could explore water management strategies on the farm by developing new goals for other crops or cultivation patterns.

کلیدواژه‌ها [English]

  • Harvest index
  • Water productivity
  • Canopy cover
  • Yield production
  • ابراهیمی پاک ن. ع. اگدرنژاد ا. تافته آ. و احمدی م. 1398. ارزیابی مدل‌های AquaCrop، Wofost و CropSyst در شبیه‌سازی عملکرد کلزا در منطقة قزوین. نشریة آبیاری و زهکشی ایران. 3(13): 715-726.
  • اراوئه ح. ف. و عباسی ف. 1396. بررسی واکنش عملکرد ذرت دانه‌ای به سطوح مختلف آب و کود مصرفی با استفاده از مدل Aquacrop. مجلة علوم و مهندسی آبیاری. 40(2): 34-119
  • رضایی‌زاده ع. تیموری ب. و مهرابی ع. 1397. واکنش برخی هیبریدهای ذرت به تنش آبی،‌ مجلة تنش‌های محیطی در علوم زراعی،‌ دانشگاه بیرجند،‌ دانشکدة کشاورزی.‌ 11(2): 301-312.
  • شهسواری گوغری‌ م. رضایی استخروئیه‌ ع. ایران‌دوست م. و نشاط ع. 1397. نشریة علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی).‌ 22(1): 54-67.
  • علیزاده ح. نظری ب. پارسی‫نژاد م. رمضانی اعتدالی ه. و جانباز ح. ر. 1390. ارزیابی مدل AquaCrop در مدیریت کم آبیاری گندم در منطقه کرج. مجلة آبیاری و زهکشی ایران 2(4): 273-283.
  • Achieng K. O. 2020. Modelling of soil moisture retention curve using machine learning techniques: Artificial and deep neural networks vs support vector regression models. Comput. Geosci. 133: 104320. https://doi.org/10.1016/j.cageo.2019.104320
  • Ahmadi S. H. Mosallaeepour E. Kamgar-Haghighi A. K. and Sepaskhah A. R. 2015. Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements. Water Resource Management. 29: 2837-2853.
  • Akumaga U. Tarhule A. and Yusuf A. A. 2017. Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa, Agricultural and Forest Meteorology. 232: 225-234.
  • Andarzian B. Bannayanb M. Stedutoc P. Mazraeha H. Barati M. E. Barati M. A. and Rahnama A. 2011. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agri. Water Manage. 100: 1-8.
  • Cheng S. Shao D. Tan X. Gu W. and Lei C. 2017. Nonstationary Stochastic Simulation–Based Water Allocation Method for Regional Water Management. J Water Resour. Plan. Manage. 145(3): 0014523. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001042
  • Cho J. Mostaghimi S. and Kang M.S. 2010. Development and application of a modeling approach for surface water and groundwater interaction. Agri. Water Manage. 97: 123–130.
  • Doorenbos J. and Kassam A.H. 1979. Yield Response to Water. FAO Irrigation and Drainage paper No. 33, FAO, Rome, Italy, pp 193.
  • 2012. Crop yield response to water by P. Steduto, T.C. Hsiao, E. Fereres, and D. Raes. FAO Irrigation and Drainage Paper No. 66. Rome.
  • Heidarinia M. Naseri A. Broumandnasab S. and Azari A. 2012. Assessing AquaCrop model application in irrigation management in north of Khosetan_Safiabad. (CD) Proceeding of the 1st national water management in farm conference. May 30-31. Iran.
  • Heng L. K. Hsiao T. C. Evett S. Howell T. and Steduto P. 2009. Validating the FAO AquaCrop model for Irrigated and Water Deficient field maize. Agronomy Journal. 101(3): 488-498.
  • Lalehzari R. Boroomand Nasab S. Moazed H. Haghighi A. and Yaghoobzadeh M. 2020. Simulation-optimization modeling for water resources management using NSGAII-OIP and Modflow. Irri. Drain. DOI: 10.1002/ird.2424.
  • Lalehzari R. Boroomand-Nasab S. Moazed H. and Haghighi A. 2016. Multi-objective management of water allocation to sustainable irrigation planning and optimal cropping pattern. Journal of Irrigation and Drainage Engineering. 142(1): 05015008. 
  • Malik A. Shakir A. S. and Ajmal M. 2017. Assessment of AquaCrop Model in Simulating Sugar Beet Canopy Cover, Biomass and Root Yield under Different Irrigation and Field Management Practices in Semi-Arid Regions of Pakistan. Water Resour Manage. 31: 4275-4292.
  • Montoya F. Camargo D. Ortega J. F. Córcoles J. I. and Domínguez A. 2016. Evaluation of Aquacrop model for a potato crop under different irrigation conditions. Agricultural Water Management. 164: 267-280.
  • Mousavizadeh S. F. Honar T. and Ahmadi S. H. Assessment of the AquaCrop model for simulating canola under different irrigation management in a semiarid area, International Journal of Plant Production, 10(4): 1735-6814.
  • Nash J. E. and Sutcliffe J. V. 1970. River flow forecasting through conceptual models. Part 1. A discussion of principles. Journal of Hydrology. 10(3): 282-292.
  • Pennell K. D. Hornsby A. G. Jessup R. E. and Rao P. S. C. 1990. Evaluation of five simulation models for predicting aldicarb and bromide behavior under field conditions. Water Resources Research. 26(11): 2679-2693.
  • Raes D. Steduto P. Hsiao T. C. and Fereres E. 2009. AquaCrop— the FAO crop model to simulate yield response to water II. Main algorithms and software description. Agronomy J. 101: 438-447.
  • Raes D. Steduto P. Hsiao T. C. and Freres E. 2012. Reference manual AquaCrop, FAO, land and water division, Rome Italy.
  • Ribaut J.M. Betran J. Monneveux P. and Setter T. 2012. Drought tolerance in maize, In: Bennetzen, j.l., Hake, sac, handbook of maize, New York. pp 11-34.
  • Sorensen R. and Butts C. 2005. Cotton, corn and peanut yield under subsurface drip irrigation, Impact of global climate change, world water and environmental resources congress. pp 1-10
  • Tavakoli A. R. Liaghat A. and Alizadeh A. 2014. Soil water balance, sowing date and wheat yield using AquaCrop model under rainfed and limited irrigation. Journal of Agricultural Engineering Research. 14(4): 41-56.
  • Steduto P. Hsiao T. C. Raes D. and Fereres E. 2009. AquaCrop—the FAO crop model to simulate yield response to water I. concepts and underlying principles. Agronomy Journal. 101: 426-437.
  • Stricevic R. Cosic M. Djurovic N. Pejic B. and Maksimovic L. 2011. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementary irrigated maize sugar beet and sunflower. Agricultural Water Management. 98: 1615-1621.