مدل‌سازی هیدرولوژیکی حوضه آبخیز رودخانه تلوار تحت تاثیر تغییرات اقلیمی

نوع مقاله : مقاله پژوهشی

نویسندگان

چکیده

شبیه‌سازی جریان رودخانه‌ها، پیش‌بینی رفتار هیدرولوژیکی حوضه‌های آبخیز و داشتن درک صحیح از مؤلفه‌های مختلف چرخة هیدرولوژیکی برای برنامه‌ریزی و حفاظت از منابع آب اهمیت بسیار دارد. مدل‌سازی از ابزارهای قابل استفاده برای مدیریت منابع آب است. مدل‌سازی کامپیوتری، در چند دهة گذشته به طور فزاینده­ای توسعه داده شد. در پژوهش حاضر بر اساس داده‌های وضع موجود ایستگاه سینوپتیک قروه، با کمک مدل SDSM دورة آماری 2049-2020 پیش‌بینی و در نهایت آثار تغییر اقلیم بر وضعیت هیدرولوژیک حوضة آبخیز رودخانة تلوار با مساحت 2490 کیلومتر مربع واقع در استان کردستان با استفاده از مدل SWAT شبیه‌سازی شد. از داده‌های روزانة دبی ایستگاه هیدرومتری تلوار- حسن‌خان در سال‌های 2000 تا 2017 میلادی برای شبیه‌سازی استفاده و آمار سال‌های 2000 تا 2011 (22 سپتامبر 2000 تا 22 سپتامبر 2011) و 2011 تا 2017 (23 سپتامبر 2011 تا 22 سپتامبر 2017) به‌ترتیب برای واسنجی و اعتبارسنجی مدل در نظر گرفته شد. ضرایب R2 و ENS برای ارزیابی کارایی مدل SWAT استفاده شد. مقدار ضرایب R2 و ENS در دورة واسنجی رواناب ماهانه به‌ترتیب 0.65 و 0.44 و در دورة اعتبارسنجی 0.77 و 0.59 به دست آمد. نتایج مطالعه، ضمن تأکید بر کارایی هر دو مدل SDSM در پیش‌بینی اقلیمی و SWAT در شبیه‌سازی هیدرولوژیکی، نشان داد که در وضعیت اقلیمی آینده، برای دورة زمانی 2049-2020 متوسط ماهانه درجة حرارت کمینه و بیشینه به غیر از ماه‌های سپتامبر، اکتبر، نوامبر و دسامبر، افزایش و متوسط بارندگی ماهانه در فصول زمستان و بهار کاهش خواهد یافت؛ در حالی که به مقدار آن در فصول تابستان و پاییز افزوده خواهد شد. مقایسه میانگین ماهانة رواناب در دورة مشاهداتی با دورة آتی نشان‌دهندة افزایش رواناب در ماه‌های ژانویه، فوریه و دسامبر و کاهش آن در دیگر ماه‌هاست.

کلیدواژه‌ها


عنوان مقاله [English]

Climate change impacts on hydrological modelling of Talvar river watershed

نویسندگان [English]

  • Foad Naserabadi
  • Reza Ghazavi
  • Mehdi Zakerinia
چکیده [English]

To cope with the current water resources issues in Iran which are going to pose a real threat on a national scale, taking into consideration of all determining factors causing these formidable water resources challenges is of paramount importance. Computer modelling has been increasingly developed over the last few decades for water resources management and planning. In the present study, climate variables included precipitation, relative humidity and temperature were predicted for the period of 2020-2049, using SDSM model. Then, impacts of climate change on hydrological conditions were evaluated via Soil and Water Assessment Tool (SWAT) in the Talvar river watershed located in the Kurdistan province, Iran.
The Talvar river watershed with an area of 2490 km2 is situated in longitudes of 47° 06' 09" E to 47° 45' 58" E and latitudes of 35° 03' 26" N to 35° 35' 26" N, located in Kurdistan province. Land use in this basin is mostly cropland and pasture. Cropland has accounted as approximately 85% of the total area, among which paddy fields and dry land farming account for 10% and 75%, respectively. Pasture cover has appraised as 14% of the study area. All other land use types (rural area, urban area, water) have made only 1% of the total study area. Mean elevation of the watershed is 1927 m above mean sea level. The SWAT model requires input on topography, soils, land use and meteorological data. Therefore, recently available GIS maps for the model inputs of the study area were used. The Talvar river watershed was discretized into 50 sub-basins and also, based on the land use, slope and soil classes the watershed was subdivided into 1151 HRUs. The climatic data were derived from 7 meteorological stations located in and out of the basin under study. Climatic data refer to daily precipitation, maximum and minimum temperature, relative humidity data. The calibration of the SWAT model was done manually based on physical catchment understanding and sensitive parameters and calibration techniques from the SWAT user manual. Sensitivity analysis has been performed using OAT (One Factor at a Time) method to evaluate and demonstrate the influences of the model parameters on water budget components included surface runoff, lateral flow, groundwater and evapotranspiration. Data from Qorveh synoptic station (1990-1999) were used for calibration of SDSM model. Climate variable include precipitation, relative humidity and temperature were predicted for the period of 2020-2049 using SDSM model. Simulated values due to considered scenarios (RCP26, RCP45 and RCP85) were compared with baseline period (1990-2005). The performance of the SWAT model was evaluated via coefficient of determination (R2) and Nash–Sutcliffe efficiency (ENS), also the performance of the SDSM model was evaluated via coefficient of determination (R2), Nash–Sutcliffe efficiency (ENS), Mean Absolute Error (MAE) and Percent Bias (PBIAS).
Based on the results of sensitivity analysis, the parameters of initial SCS runoff curve number for moisture condition, the parameters that hadthe greatest influence on water budget components (including surface runoff, lateral flow, groundwater and evapotranspiration) can be listed as :.Π (CN2), soil available water capacity (SOL_AWC), soil bulk density (SOL_BD), saturated hydraulic conductivity (SOL_K), maximum canopy storage (CANMX), soil evaporation compensation factor (ESCO), minimum melt rate for snow during the year (SMFMN), maximum melt rate for snow during the year (SMFMX), snowfall temperature (SFTMP) and snow melt base temperature (SMTMP) According to the results, a satisfactory agreement was observed between monthly simulated and measurement discharge (R2 and ENS were 0.65 and 0.44 for calibration and 0.77 and 0.59 for validation periods). The results of the SDSM model showed that the monthly mean of minimum and maximum temperatures would increase compared to the baseline period except for the months of September, October, November and December. Also monthly average of precipitation would decrease in winter and spring seasons but it would increase in the summer and autumn seasons. The results of runoff simulation showed that monthly average of runoff would increase in the months of January, February and December, compared with the baseline period. The weakness of the model to simulate flow for some months was probably due to poor characterization of snowmelt processes in the basin under study. Also, the model overestimats surface water in the beginig of summer, due to its defaults for transfer in layers.

کلیدواژه‌ها [English]

  • Calibration
  • Runoff
  • SWAT
  • SDSM
  • Validation