تحلیل عدم قطعیت مدل‌سازی زراعی-هیدرولوژیکی توزیعی و زیرروزانه یک سیستم زارعی کشت نیشکر با مدیریت ترکیبی زهکشی زیرزمینی آزاد/کنترل شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اردبیل.

2 دانشگاه هرمزگان

چکیده

با وجود قابلیت بالای مدل‌های زراعی-هیدرولوژیکی مزرعه-مقیاس در شبیه‌سازی اندرکنش رشد گیاه با انتقال آب و املاح، نتایج حاصل از آن‌ها در معرض درجات مختلفی از عدم قطعیت قرار دارد. از این‌رو، تحلیل عدم قطعیت این مدل‌ها به‌منظور در دست داشتن برآوردی کمی از درجه استحکام نتایج مدل اهمیت می‌یابد. در این مطالعه، عدم قطعیت کاربرد توزیعی و زیرروزانه نسخه تصحیح شده‌ای از مدل SWAP برای یک مزرعه نیشکر با مدیریت ترکیبی زهکشی زیرزمینی آزاد/کنترل شده (واقع در کشت و صنعت نیشکر شعیبیه، خوزستان) از طریق تلفیق روش برآورد عدم قطعیت درست‌نمایی تعمیم یافته (GLUE) با گونه یکپارچه‌سازی شده الگوریتم بهینه‌سازی رفتار جمعی اجزا (UPSO) مورد ارزیابی قرار گرفت. در روش تلفیقی GLUE-UPSO، نمونه‌گیری از فضای پارامترهای واسنجی مدل از طریق الگوریتم UPSO و سایر مراحل محاسبات عدم قطعیت بر اساس روش GLUE صورت گرفت. نتایج تحلیل عدم قطعیت مدل حاکی از غیریکتایی قابل توجه پارامترهای واسنجی شده و وجود همبستگی‌های قوی بین آنها بود. نتایج حاکی از اهمیت استفاده از داده‌های واسنجی متنوع در کاهش عدم قطعیت شبیه‌سازی‌های مدل بود. محدوده‌های عدم قطعیت پیش‌بینی 95 درصد (95PPU) محاسبه شده برای مولفه‌های هیدرولوژی (رطوبت خاک، نوسانات سطح ایستابی و جریان زه‌آب خروجی از زهکش زیرزمینی)، انتقال املاح (نیم‌رخ غلظت املاح آب خاک و شوری زه‌آب) و بیوفیزیکی مدل (شاخص سطح برگ، عملکرد نی و عملکرد ساکارز) به‌ترتیب، بین 41 تا 87، 18 تا 67 و 75 تا 100 درصد از کل داده‌های اندازه‌گـیری شـده (مشتمل بر هر دو مجموعه داده‌های واسنجی و صحت‌سنجی) را با r-factor بین 0.71 تا 1.14، 0.33 تا1.14 و 0.84 تا 0.98 در بر گرفتند. نتایج این مطالعه، موید قابلیت روش تلفیقی GLUE-UPSO در واسنجی و تحلیل عدم قطعیت مولفه‌های مختلف مدل SWAP به‌طور هم‌زمان و در شرایط تعدد پارامترهای واسنجی بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Uncertainty Analysis of Distributed Sub-Daily Agro-Hydrological Modeling of a Sugarcane Farming System with Combinational Free/Controlled Subsurface Drainage Management

نویسندگان [English]

  • Farzin Parchami-Araghi 1
  • Adnan Sadeghi Lari 2
1 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اردبیل.
2 Hormozgan UN
چکیده [English]

Introduction:

Agro-hydrological models play an important role in water resource management. However, their predictions always suffer from various sources of uncertainty, including model structures, parameters, and input and output data. Model structural uncertainty is caused by the fact that the model cannot perfectly represent the natural processes involved in the studied system. Parameter uncertainty indicates that many model parameters are not directly measurable or can only be obtained with unknown errors. Measurement uncertainty in input and output data is due to unknown measurement errors and incommensurability errors. Hence, it is important to assess the degree of uncertainty involved in agro-hydrologic modeling. The generalized likelihood uncertainty estimation (GLUE) method has been widely used for uncertainty analysis in hydrologic modeling because of its simplicity, ease of implementation, and less strict statistical assumptions about model errors. In GLUE, parameter uncertainty accounts for all sources of the model uncertainty. The drawback of the GLUE is its prohibitive computational burden imposed by its random sampling strategy, which hinders the efficient application of the method. In this study, a hybrid high-dimensional uncertainty analysis method was developed, combining GLUE with an evolutionary optimization algorithm, Unified Particle Swarm Optimization (UPSO), to improve the computational efficiency of the GLUE framework. UPSO is a modification of Particle Swarm Optimization (PSO) that aggregates its local and global variants, combining their exploration and exploitation capabilities without additional objective function evaluations. The hybrid GLUE-UPSO framework was used for uncertainty analysis of SWAP distributed sub-daily agro-hydrological modeling for a sugarcane farming system with combinational free/controlled subsurface drainage management.



Methods:

The source code of the SWAP model was modified and extended to consider the duration of the irrigation events, simulation of sub-daily reference evapotranspiration, sub-daily precipitation interception, ratooning, and implementation of subsurface controlled drainage during the simulation period. The GLUE-UPSO framework was coded in FORTRAN and C++ and integrated into SWAP source code. The developed framework was applied to a dataset collected from a field with a combinational free/controlled (70-cm depth) subsurface drainage management located at Shoaybiyeh Sugarcane Agro-industrial company farms, Khuzestan province, Iran. The simulation was performed from 2010-07-19 to 2011-12-11 (481 days) for planted sugarcane (CP48-103 cultivar). A soil profile of 550 cm depth (depth of impermeable layer) was specified during simulations. The soil profile was divided into two layers. To consider the heterogeneity of irrigation scheduling at different parts of the studied field, the field area ( 21 ha) was divided into ten homogeneous simulation units, termed as hydrotopes. Hydrotopes have similar agro-hydrological properties except for irrigation scheduling. The model was calibrated, using the measured soil moisture profile, soil solute concentration profile, groundwater level, subsurface drainage outflow, drainage outflow salinity, Leaf Area Index (LAI), cane yield, and sucrose yield in a parallel manner. The weighted average of simulated values derived for each hydrotopes was compared with the corresponding measured data. Totally, 45 parameters were estimated through the GLUE-UPSO framework. The accuracy of the model in calibration and validation stages was evaluated, normalized root mean square error NRMSE and Nash-Sutcliffe model efficiency coefficient EF. The behavioral parameters were identified, using NRMSE > 0.2 for solute transport (soil water solute concentration and drainage outflow salinity) and EF > 0.7 for hydrological (soil water content, water table level, and drainage outflow) and biophysical (cane yield, sucrose yield, and LAI) simulations. For each parameter set, the objective function values were used as the likelihood measure to calculate the corresponding likelihood weights. The 95% prediction uncertainty (95PPU) bands were calculated at the 2.5% and 97.5% levels of the cumulative posterior distribution (realized from the weighted behavioral parameter sets) of the simulated state/flux variables.



Results:

The results revealed a significant nonuniqueness of the calibrated parameters and the necessity of an uncertainty assessment for the SWAP simulations. Strong parameter correlations highlighted the need for calibration of the model parameters against diverse calibration data in a simultaneous manner. The 95% prediction uncertainty bands obtained for the model's hydrology (soil water content, water table level, sub-surface drainage outflow), solute transport (soil water solute concentration and sub-surface drainage outflow salinity), and biophysical (leaf area index, cane, and sucrose dry yield) components enveloped 41-87%, 18-67%, and 75-100% of the corresponding total observed data (including both calibration and validation datasets), respectively, with a r-factor (the ratio of the average thickness of the 95PPU band to the standard deviation of the corresponding measured variable) of 0.71-1.14, 0.33-1.14, and 0.84-0.98. The results indicated that the hybrid GLUE-UPSO framework offers an efficient alternative to provide traditional calibrated parameters as well as uncertainty analysis of computationally expensive hydrologic models.

کلیدواژه‌ها [English]

  • Generalized Likelihood Uncertainty Estimation
  • Salinity
  • SWAP model
  • Unified Particle Swarm Optimization
  • پرچمی عراقی ف. سمیع‌پور ف. و صادقی لاری ع. 1399. مدل‌سازی زراعی- هیدرولوژیکی توزیعی و زیرروزانة یک سیستم زارعی کشت نیشکر با مدیریت ترکیبی زهکشی زیرزمینی آزاد/ کنترل‌شده. مجلة پژوهش آب ایران. 39(4): 53-66.
  • پرچمی عراقی ف. میرلطیفی س. م. قربانی دشتکی ش. وظیفه‌دوست م. و صادقی لاری ع. 1394الف. توسعة یک چارچوب ریزمقیاس‌سازی به‌منظور برآورد تبخیر-تعرق مرجع زیرروزانه: 2- برآورد تبخیر-تعرق زیرروزانه با استفاده از داده‌های هواشناسی روزانة ریزمقیاس‌شده. نشریة آب و خاک. 29(6): 1721-1734.
  • پرچمی عراقی ف. میرلطیفی س. م. قربانی دشتکی ش. و صادقی لاری ع. 1394ب. مقایسة تبخیر-تعرق مرجع پنمن-مانتیث ASCE و پنمن-مانتیث فائو-56 در مقیاس‌های زمانی زیرروزانه مختلف: یک مطالعة عددی. نشریة آب و خاک. 29(5): 1173-1189.
  • صادقی لاری ع. 1391. بررسی اثرات کنترل سطح ایستابی برروی میزان جریان، نیتروژن و فسفر خروجی از زهکش‌های زیرزمینی در نواحی خشک (مطالعة موردی: شعیبیه خوزستان). پایان‌نامة دکتری. دانشگاه شهید چمران، اهواز. 178 ص.
  • Abbaspour K. C. 2008. SWAT-CUP2: SWAT Calibration and Uncertainty Programs - A User Manual, 2. Department of Systems Analysis, Integrated Assessment and Modelling (SIAM), Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland. 95 p.
  • Bastiaanssen W. Tahir Z. Kijne J. W. Barker R. and Molden D. 2003. Upscaling water productivity in irrigated agriculture using remote-sensing and GIS technologies. In: Kijne J.W., Barker R., and Molden D. (Eds.), Water productivity in agriculture: Limits and opportunities for improvement. Wallingford: CABI, pp. 289-300.
  • Bessembinder J. J. E. Dhindwal A. S. Leffelaar P. A. Ponsioen T. and Singh S. 2003. Analysis of crop growth. In: van Dam J. C. and Malik R. S. (Eds.), Water Productivity of Irrigated Crops in Sirsa District, India: Integration of remote sensing, crop and soil models and geographical information systems. Wageningen: Alterra. 59-82.
  • Beven K. 2006. A manifesto for the equifinality thesis. Journal of Hydrology. 320(1-2): 18-36.
  • Beven K. J. and Binley A. 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes. 6(3): 279-298.
  • Binley A. and Beven K. 2003. Vadose zone flow model uncertainty as conditioned on geophysical data. Groundwater. 41(2): 119-127.
  • Cho H. and Olivera F. 2014. Application of multimodal optimization for uncertainty estimation of computationally expensive hydrologic models. Journal of Water Resources Planning and Management. 140(3): 313-321.
  • Haverkamp R. Leij F. J. Fuentes C. Sciortino A. and Ross P. 2005. Soil water retention: I. Introduction of a Shape Index. Soil Science Society of America Journal. 69(6): 1881-1890.
  • Kroes J. van Dam J. Bartholomeus R. Groenendijk P. Heinen M. Hendriks R. Mulder H. Supit I. and van Walsum P. 2017. SWAP version 4, Theory description and user manual. Technical Report. Wageningen Environmental Research, ESG Report 2780, Alterra, Wageningen, The Netherlands.
  • Li P. and Ren L. 2019. Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: I. Parameter sensitivity analysis, calibration and model validation. Journal of Hydrology. 574: 497-516.
  • Loague K. and Green R. E. 1991. Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of contaminant hydrology. 7(1): 51-73.
  • Moriasi D. N. Arnold J. G. van Liew M. W. Bingner R. L. Harmel R. D. and Veith T. L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASAE 50(3): 885-900.
  • Mugunthan P. and Shoemaker C. A. 2006. Assessing the impacts of parameter uncertainty for computationally expensive groundwater models. Water Resources Research. 42(10): W10428.
  • Parsopoulos K. E. and Vrahatis M. N. 2004. UPSO: A unified particle swarm optimization scheme. In: Simos T. and Maroulis G. (Eds.), Proceedings of international conference on computational methods in sciences and engineering (ICCMSE 2004). Lecture Series on Computer and Computational Sciences, Zeist: VSP International Science Publishers. 868-873.
  • Pollacco J. A. P. and Mohanty B. P. 2012. Uncertainties of water fluxes in soil–vegetation–atmosphere transfer models: Inverting surface soil moisture and evapotranspiration retrieved from remote sensing. Vadose Zone Journal. 11(3): vzj2011. 0167.
  • Schaap M. G. and Leij F. J. 1998. Database-related accuracy and uncertainty of pedotransfer functions. Soil Science. 163(10): 765-779.
  • Shafiei M. Ghahraman B. Saghafian B. Davary K. Pande S. and Vazifedoust M. 2014. Uncertainty assessment of the agro-hydrological SWAP model application at field scale: A case study in a dry region. Agricultural Water Management. 146: 324-334.
  • Soleimannejad F. 2004. Six Sigma, Basic Steps and Implementation. AuthorHouse, Bloomington, Indiana, USA, 248 p.
  • Supit I. Hooijer A. A. and van Diepen C. A. 1994. System description of the Wofost 6.0 crop simulation model implemented in CGMS. Joint research centre; European commission.
  • Tolson B. A. and Shoemaker C. A. 2008. Efficient prediction uncertainty approximation in the calibration of environmental simulation models. Water Resources Research. 44(4): W04411.
  • United Nations Environment Programme (UNEP). 2015. Nile River Basin: Nile Basin Adaptation to Water Stress: Comprehensive Assessment of Flood & Drought Prone Areas. (Available at: http://wedocs.unep.org/handle/20.500.11822/14067).
  • Vazifedoust M. van Dam J.C. Feddes R. A. and Feizi M. 2008. Increasing water productivity of irrigated crops under limited water supply at field scale. Agricultural Water Management. 95(2): 89-102.
  • Wesseling J. Kroes J. Oliveira T. C. and Damiano F. 2020. The impact of sensitivity and uncertainty of soil physical parameters on theterms of the water balance: Some case studies with default R packages. PartII: Results and discussion. Computers Electronics in Agriculture. 170: 105072.
  • Yang J. Reichert P. Abbaspour K. C. Xia J. and Yang H. 2008. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology. 358(1): 1-23.