Introduction: Iron is one of the elements whose total amount in Iranian soils is significant. This element is nutritionally essential for the plant, but too much of it can cause toxic conditions. It is noteworthy that wetland conditions affect the solubility of this metal and its high content can also cause clogging of drains. Soil pH is the most important factor affecting the absorption of iron and in anaerobic and acidic conditions, the amount of iron increases to toxicity. Increasing the solubility of iron due to physicochemical interactions of wetlands not only increases the absorption of iron as a micronutrient and essential element for the plant, but also affects its leaching. This study was conducted to investigate the effect of controlled drainage on iron concentration in drainage water and its uptake by maize.
Methods: This study was conducted in two cropping years 2018 and 2019 (spring and autumn cultivation) in the experimental farm of Shahid Chamran University of Ahvaz at 400 m2 (length and width equal to 20 m) was done. In this study, single-cross 647 hybrid maize was used in spring planting and single-cross 704 in autumn planting. For this purpose, factorial experiment was performed based on a completely randomized design with four treatments and three replications in two planting seasons; i.e. spring and fall on the experimental fields. The first treatment was free drainage (FD), the second treatment was variable water table (CD-Var) (with a fixed distance from the water table to the root development area), the third treatment was water table stabilization at a depth of 50 cm (CD50) and the fourth treatment was water table stabilization at depth 50 cm and release after 24 hours after irrigation (CD-In). Controlled drainage experiments were performed using cylindrical lysimeters made of corrugated polyethylene with a diameter of 80 cm and a height of 120 cm with an underground drainage system.
Results: According to results in two planting seasons the controlled drainage had a significant effect on the concentration of iron in drainage water, iron uptake by maize and the yield of maize components at the level of one percent. The highest concentration of iron in drainage water in spring and autumn cultivations was related to controlled drainage treatment with variable water table (CD-Var) of 1.92 and 1.56 mg / l respectively, and the lowest concentration of iron in drainage water was related to free drainage treatment (FD) equal to 0.83 and 0.8 mg / l were obtained in spring and autumn cultivations respectively. The results showed that the concentration of iron in the grain was higher than the stem and leaf. The highest concentration of iron in grain for CD-Var treatment in spring and autumn cultivation was 103 and 80 mg / kg, respectively, and the lowest concentration of iron in grain for FD treatment in spring and autumn cultivation was 32 mg / kg and 30 mg / kg, respectively. On the other hand, controlled drainage increased crop yield in CD-Var treatment compared to other treatments. 1000-seed weight in CD-Var treatment in spring and autumn cultivation were 282 and 313 g, respectively, and these values were 207 and 222 g for FD treatment, respectively. Also, iron concentration in soil, seeds, stems and leaves in CD-Var treatment was higher than other treatments. The results showed that controlled drainage increases plant yield and water use efficiency. Also, in terms of water use efficiency, controlled drainage between different treatments has created a significant difference at the level of five percent. Controlled drainage has significantly increased water use efficiency in different treatments. The highest effect on water use efficiency was related to CD-Var treatment at 9.44 and 10.69 kg / ha and the lowest effect was related to FD treatment at 7.37 and 8.27 kg / ha for spring and autumn cultivation, respectively. but on the other hand, based on the results of iron concentration in the drainage water and its increasing trend, there is the potential for ochre production in CD-Var and CD50 treatments. In CD-In treatment, in terms of ochre production potential, it was in the low potential range. In free drainage treatment, the concentration of iron in the drain in both seasons and during the growth period was less than one milligram per liter and can be neglected in terms of the potential for ochre production.
بشارتی ج. صالح راستین ن. و فلاح ع. بررسی کارایی کود بیولوژیک حاوی میکرواورگانیسمهای اکسیدکننده گوگرد در تأمین آهن مورد نیاز ذرت. همایش خاک، محیطزیست و توسعه پایدار. 1385 کرج- دانشگاه تهران، پردیس کشاورزی و منابع طبیعی. 2 ص
ترابی ح. 1382. پیدایش، ردهبندی و ارزیابی کیفی، کمی و اقتصادی تناسب اراضی خیس برای کشت برنج در شرق گیلان. پایاننامه دکتری. دانشگاه صنعتی اصفهان.
جوانیجونی ح. لیاقت ع. حسناقلی ع. و نظری ب. 1397. تأثیر زهکشی کنترلشده بر دبی زهاب، سطح ایستابی و بهرهوری آب در دشت مغان. تحقیقات آب و خاک ایران. 49(1): 207-219.
ذلیکانی ز. و شاهنظری ع. 1392. تأثیر زهکشی زیرزمینی بر میزان خروج عنصر آهن در اراضی شالیزاری. اولین همایش ملی زهکشی و کشاورزی پایدار. اسفند ماه، دانشگاه تربیت مدرس، 8 ص.
رونیاسی ن. و پرویزی مساعد ح. 1395. بررسی میزان فلزات سنگین در قسمتهای مختلف برخی از سبزیجات مصرفی شهر کرج. مجله سلامت و محیطزیست، فصلنامهی علمی پژوهشی انجمن علمی بهداشت محیط ایران. 9(2): 171-184
کلباسی م. و حسینپور ع. 1376. اثر ماندابشدن موقت سه خاک آهکی بر برخی ویژگیهای شیمیایی و تغییرات آن پس از زهکشی. مجله علوم کشاورزی ایران. 28 (3): 50-58.
ملکوتی م. ج. و تهرانی م. م. 1384. نقش ریزمغذیها در افزایش عملکرد و بهبود کیفیت محصولات کشاورزی. تهران: انتشارات دانشگاه تربیت مدرس، 328 ص.
میرپاریزی ا. بارانی مطلق م. موحدی نائینی س. قربانی نصرآبادی ر. و بختیاری س. 1397. اثر کاربرد خاکی سرباره مس و ترکیبات آلی بر فراهمی آهن و رشد گیاه سورگوم. مهندسی زراعی (مجلة علمی کشاورزی). 41(2): 1-25.
واثقی س. افیونی م. شریعتمداری ح. و مبلی م. 1384. اثر لجن فاضلاب روی برخی غلظت عناصر غذایی و خصوصیات شیمیایی خاک. مجلة آب و فاضلاب. 16(1): 15-22.
Abbott C. L. Cascio A. L. Abdel-Gawad S. Morris J. and Hess T. 2003. Guideline for Controlled Drainage. Report OD 147. February. Department for International Development.
Addo M. A. Darko E. O. Gordon C. Nyarko B. J. B. and Gbadago J. K. 2012. Heavy metal concentrations in road deposited dust at Ketu-south district. International Journal of Science and Technology. 2(1) 28-39.
Allison L. E. and Modie C. D. 1965. Carbonate. In Blck (ed.) Method of soil analysis part 2. Soil Science Society of
America and American Society of Agronomy Madison. WI. USA. 1379-1396.
Ayars J. E. Chresten E. W. and Hornbuckle J. W. 2006. Controlled drainage for improved water management in arid regions irrigated agriculture. Agricultural Water Management. 86: 128-139.
H. W. 1982. Biological clogging of drain envelopes. In: Proc. 2nd Internat. Drainage Workshop. Washington DC. 215-220.
Gupta P. K. 2000. Soil, Plant, Water, and Fertilizer Analysis. Agrobios, New Dehli, India. 366 p
Hassanoghli A. R. Esmaeili Aminlooi A. and Sakhaei Rad H. 2015. Assessment in of quality and quantity drain in subsurface drainage drains without envelope in comparison with mineral envelope in Shadegan Plain. Water Research in Agriculture. 22(2): 263-275.
Jones B. Jr. 2001. Laboratory guide for conducting soil tests and plant analysis. USA: CRC Press.
Jorfi S. Maleki R. Jaafarzadeh N. and Ahmadi M. 2017. Pollution load for heavy metals in Mian-Ab plain soil, Khuzestan, Iran. Data in Brief. 15: 584-590
Katoh M. A. Iwata I. Shaku Y. Nakajima K. Matsuya and M. Kimura. 2003. Impact of water percolation on nutrient leaching from an irrigated paddy field in Japan. Soil Use and Management. 19: 298-304.
Katoh M. J. Murase M. Hayashi K. Matsuya and M. Kimura. 2004. Nutrient Leaching from the Plow Layer by Water Percolation and Accumulation in the Subsoil in an irrigated Paddy Field. Soil Science and Plant Nutrition. 50(5): 721-729.
Klute A. 1986. Methods of soil analysis. Part1- Physical and mineralogical methods. (2nd. ed). ASA and SSSA. Madison. WI.
Lindsay W. L. and Norvell W. A. 1978. Development of a DTPA soil test for zinc iron manganese and copper. Soil Science Society of America Journal. 42: 421-428.
Min P. Chuandong Zh. Honghong M. Zhongfang Y. Ke Y. Fei L. Kuo L. Zheng Y. Shiqi T. Fei G. Xiujin L. and Hangxin Ch. 2020. Heavy metal and Pb isotopic compositions of soil and maize from a major agricultural area in Northeast China: Contamination assessment and source apportionment. Journal of Geochemical Exploration 208. https://doi.org/10.1016/j.gexplo.2019.106403.
Nelson D.W. and Sommers L.P. 1982. Total Carbon, Organic Carbon and Organic Matter. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd Edition. ASA-SSSA, Madison. 579-595.
Olsen S. R. Cloe V. Watnebe F. S. and Pean L. A. 1954. Estimation of available phosphorous in soil by extraction with sodium bicarbonate. USDA. 939 USA.
Rajeshkumar S. Liu Y. Zhang X. Ravikumar B. Bai G. and Li X. 2018. Studies on seasonal pollution of heavy metals in water. sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere. 191: 626-638.
Ramoska E. D. Bastinene N. I. and Saulys V. A. 2011. Evaluation of controlled drainage efficiency in LITHUANIA. Irrig. Drain. 60: 196-206.
Richards L. A. 1969. Diagnosis and improvement of saline and alkali soils. US Salinity Laboratory Staff. Agricultural Handbook. NO.60. USDA. USA.
A. Chakrol-hosseini M. and Karimian N. 2002. Growth and chemical composition of corn as affected by phosphorus and iron. Journal of Science and Technology of Agricultural and Natural Resources. 6: 91-102
Saadat S. Bowling L. Frankerberger J. and Kladivko E. 2018. Nitrate and phosphorus transport through subsurface drains under free and controlled drainage. Water Research. 142: 196-207
Shan Li. Miao Wu. and Jingsi Li. 2020. Influence of different controlled drainage strategies on the water and salt environment of ditch wetland: A model-based study. Soil and Tillage Research 28 December Volume 208 Cover date: April 2021
Shao Shan A. Yi-Mei H. Fen-Li Z. and Jian-Guo Y.2008.Aggregate characteristics during natural revegetation on the Loess Plateau. Soil Science Society of China. 18(6): 809-816
Torabi Golsefidi H. Eghbal K. M. and Givi J. 2003. Morphology and Micromorphology of Paddy Soils on different landforms in Guilan Province. Northern Iran. Article collections of 8th Iranian Soil Science congress. Iran. Oct 2003. 119-121.
Soufi Ahmadi,V. , Ghobadinia,M. , Naseri,A. , Nouri,M. R. and Motaghian,H. (2021). Effect of controlled drainage on changes in iron concentration in drainage water and its uptake by maize. Iranian Water Researches Journal, 15(3), 1-14.
MLA
Soufi Ahmadi,V. , , Ghobadinia,M. , , Naseri,A. , , Nouri,M. R. , and Motaghian,H. . "Effect of controlled drainage on changes in iron concentration in drainage water and its uptake by maize", Iranian Water Researches Journal, 15, 3, 2021, 1-14.
HARVARD
Soufi Ahmadi V., Ghobadinia M., Naseri A., Nouri M. R., Motaghian H. (2021). 'Effect of controlled drainage on changes in iron concentration in drainage water and its uptake by maize', Iranian Water Researches Journal, 15(3), pp. 1-14.
CHICAGO
V. Soufi Ahmadi, M. Ghobadinia, A. Naseri, M. R. Nouri and H. Motaghian, "Effect of controlled drainage on changes in iron concentration in drainage water and its uptake by maize," Iranian Water Researches Journal, 15 3 (2021): 1-14,
VANCOUVER
Soufi Ahmadi V., Ghobadinia M., Naseri A., Nouri M. R., Motaghian H. Effect of controlled drainage on changes in iron concentration in drainage water and its uptake by maize. IWRJ, 2021; 15(3): 1-14.